Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38713581

RESUMO

ABSTRACT: Post-sepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness (CCI) with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and non-classical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNFα production based on clinical outcome. This may provide therapeutic targets for those at risk for CCI in order to improve their phenotype/endotype, morbidity, and long-term mortality.

2.
Front Immunol ; 15: 1355405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720891

RESUMO

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Assuntos
Células Supressoras Mieloides , Sepse , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Sepse/imunologia , Transcriptoma , Masculino , Feminino , Diferenciação Celular/imunologia , Perfilação da Expressão Gênica
3.
Shock ; 59(2): 145-154, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730790

RESUMO

ABSTRACT: Burn injury is a significant source of morbidity and mortality in the pediatric population. Although 40,000 pediatric patients in the United States are admitted to the hospital with burn wounds annually, significant differences exist in the management and treatment of these patients, even among highly specialized burn centers. Some aspects of pediatric burn research, such as metabolic changes and nutritional support after burn injury, have been studied extensively; however, in many aspects of burn care, pediatric research lags behind the study of adult populations. This review compares and contrasts a wide array of physiologic and immune responses between children and adults after burn injury. Such a review elucidates where robust research has been conducted, where adult research is applicable to pediatric patients, and where additional pediatric burn research needs to be conducted.


Assuntos
Unidades de Queimados , Hospitalização , Criança , Humanos , Adulto , Estados Unidos , Hospitais , Estudos Retrospectivos
4.
Shock ; 59(2): 125-134, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383390

RESUMO

ABSTRACT: Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.


Assuntos
Sepse Neonatal , Sepse , Gravidez , Feminino , Recém-Nascido , Humanos , Imunidade Treinada , Imunidade Adaptativa , Imunidade Inata/fisiologia
5.
J Leukoc Biol ; 112(6): 1525-1534, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193662

RESUMO

Sepsis remains the single most common cause of mortality and morbidity in hospitalized patients requiring intensive care. Although earlier detection and improved treatment bundles have reduced in-hospital mortality, long-term recovery remains dismal. Sepsis survivors who experience chronic critical illness often demonstrate persistent inflammation, immune suppression, lean tissue wasting, and physical and functional cognitive declines, which often last in excess of 1 year. Older patients and those with preexisting comorbidities may never fully recover and have increased mortality compared with individuals who restore their immunologic homeostasis. Many of these responses are shared with individuals with advanced cancer, active autoimmune diseases, chronic obstructive pulmonary disease, and chronic renal disease. Here, we propose that this resulting immunologic endotype is secondary to a persistent maladaptive reprioritization of myelopoiesis and pathologic activation of myeloid cells. Driven in part by the continuing release of endogenous alarmins from chronic organ injury and muscle wasting, as well as by secondary opportunistic infections, ongoing myelopoiesis at the expense of lymphopoiesis and erythropoiesis leads to anemia, recurring infections, and lean tissue wasting. Early recognition and intervention are required to interrupt this pathologic activation of myeloid populations.


Assuntos
Estado Terminal , Sepse , Humanos , Estado Terminal/terapia , Mielopoese , Recidiva Local de Neoplasia , Sepse/etiologia , Sobreviventes , Doença Crônica
7.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725405

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/diagnóstico , Criança , Humanos , Monócitos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
8.
J Leukoc Biol ; 112(2): 219-220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35481682

RESUMO

Lipopolysaccharide (LPS), one of the main components of cell membranes in gram-negative bacteria, is commonly used to promote inflammation-induced organ dysfunction. In the TLR4/LPS pathway, LPS binding protein and CD14 enable lipid A of LPS to be recognized by the TLR4-MD2 receptor complex. The intracellular domain of the TLR4/LPS complex stimulates MyD88-dependent/independent and TRIF-dependent pathways, which in turn activate NF-B and IRF3, leading to subsequent production of pro-inflammatory mediators. LPS has been demonstrated to induce microcirculatory disturbances via promotion of leukocyte adhesion to the vascular endothelium and the release of reactive oxygen species (ROS), damaging the vessels and causing vascular dysfunction. Thus, LPS is frequently used as a systemic model of inflammation as LPS administration increases circulating pro-inflammatory mediators, which triggers leukocyte adhesion and leads to multi-organ failure and death.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microcirculação , Insuficiência de Múltiplos Órgãos/etiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
J Trauma Acute Care Surg ; 93(2): 137-146, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324554

RESUMO

BACKGROUND: Sepsis-induced gut microbiome alterations contribute to sepsis-related morbidity and mortality. Given evidence for improved postsepsis outcomes in females compared with males, we hypothesized that female mice maintain microbiota resilience versus males. METHODS: Mixed-sex C57BL/6 mice underwent cecal ligation and puncture (CLP) with antibiotics, saline resuscitation, and daily chronic stress and were compared with naive (nonsepsis/no antibiotics) controls. For this work, the results of young (3-5 months) and old (18-22 months) adult mice were analyzed by sex, independent and dependent of age. Mice were sacrificed at days 7 and 14, and 16S rRNA gene sequencing was performed on fecal bacterial DNA. α and ß diversity were determined by Shannon index and Bray-Curtis with principal coordinate analysis, respectively. False discovery rate (FDR) correction was implemented to account for potential housing effect. RESULTS: In control mice, there was no difference in α or ß diversity between male and female mice (FDR, 0.76 and 0.99, respectively). However, male mice that underwent CLP with daily chronic stress had a decrease in microbiota α diversity at 7 days post-CLP (Shannon FDR, 0.005), which was sustained at 14 days post-CLP (Shannon FDR, 0.001), compared with baseline. In addition, male mice maintained differences in ß diversity even at day 14 compared with controls (FDR, <0.0001). In contrast, female mice had a decreased microbiota α diversity (Shannon FDR, 0.03) and ß diversity (FDR, 0.02) 7 days post-CLP but recovered their α and ß diversity by post-CLP day 14 (Shannon FDR, 0.5, and FDR, 0.02, respectively). Further analysis of females revealed that only young female mice were not different (ß diversity) post-CLP day 14 to controls. CONCLUSION: Although sepsis-induced perturbations of the intestinal microbiota occur initially in both male and female C57BL/6 mice, females demonstrate different microbiota by day 14. This may be seen primarily in younger females. This difference in recovery may play a role in outcome differences between sexes after sepsis.


Assuntos
Microbiota , Sepse , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Sepse/genética , Caracteres Sexuais
10.
Front Immunol ; 12: 696536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484194

RESUMO

Background: With the successful implementation of the Surviving Sepsis Campaign guidelines, post-sepsis in-hospital mortality to sepsis continues to decrease. Those who acutely survive surgical sepsis will either rapidly recover or develop a chronic critical illness (CCI). CCI is associated with adverse long-term outcomes and 1-year mortality. Although the pathobiology of CCI remains undefined, emerging evidence suggests a post-sepsis state of pathologic myeloid activation, inducing suboptimal lymphopoiesis and erythropoiesis, as well as downstream leukocyte dysfunction. Our goal was to use single-cell RNA sequencing (scRNA-seq) to perform a detailed transcriptomic analysis of lymphoid-derived leukocytes to better understand the pathology of late sepsis. Methods: A mixture of whole blood myeloid-enriched and Ficoll-enriched peripheral blood mononuclear cells from four late septic patients (post-sepsis day 14-21) and five healthy subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). Results: We identified unique transcriptomic patterns for multiple circulating immune cell subtypes, including B- and CD4+, CD8+, activated CD4+ and activated CD8+ T-lymphocytes, as well as natural killer (NK), NKT, and plasmacytoid dendritic cells in late sepsis patients. Analysis demonstrated that the circulating lymphoid cells maintained a transcriptome reflecting immunosuppression and low-grade inflammation. We also identified transcriptomic differences between patients with bacterial versus fungal sepsis, such as greater expression of cytotoxic genes among CD8+ T-lymphocytes in late bacterial sepsis. Conclusion: Circulating non-myeloid cells display a unique transcriptomic pattern late after sepsis. Non-myeloid leukocytes in particular reveal a host endotype of inflammation, immunosuppression, and dysfunction, suggesting a role for precision medicine-guided immunomodulatory therapy.


Assuntos
Infecções Bacterianas/genética , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Linfócitos/metabolismo , Micoses/genética , RNA-Seq , Sepse/genética , Análise de Célula Única , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/sangue , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Estudos de Casos e Controles , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Feminino , Humanos , Linfócitos/imunologia , Linfócitos/microbiologia , Masculino , Pessoa de Meia-Idade , Micoses/sangue , Micoses/imunologia , Micoses/microbiologia , Fenótipo , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia , Fatores de Tempo
11.
J Clin Med ; 10(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361995

RESUMO

Surgical sepsis has evolved into two major subpopulations: patients who rapidly recover, and those who develop chronic critical illness (CCI). Our primary aim was to determine whether CCI sepsis survivors manifest unique blood leukocyte transcriptomes in late sepsis that differ from transcriptomes among sepsis survivors with rapid recovery. In a prospective cohort study of surgical ICU patients, genome-wide expression analysis was conducted on total leukocytes in human whole blood collected on days 1 and 14 from sepsis survivors who rapidly recovered or developed CCI, defined as ICU length of stay ≥ 14 days with persistent organ dysfunction. Both sepsis patients who developed CCI and those who rapidly recovered exhibited marked changes in genome-wide expression at day 1 which remained abnormal through day 14. Although summary changes in gene expression were similar between CCI patients and subjects who rapidly recovered, CCI patients exhibited differential expression of 185 unique genes compared with rapid recovery patients at day 14 (p < 0.001). The transcriptomic patterns in sepsis survivors reveal an ongoing immune dyscrasia at the level of the blood leukocyte transcriptome, consistent with persistent inflammation and immune suppression. Furthermore, the findings highlight important genes that could compose a prognostic transcriptomic metric or serve as therapeutic targets among sepsis patients that develop CCI.

12.
Methods Mol Biol ; 2321: 27-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048005

RESUMO

Studying the pathophysiology of sepsis still requires animal models, and the mouse remains the most commonly used species. Here we discuss the "cecal slurry" (CS) model of polymicrobial, peritoneal sepsis and compare and contrast it to other commonly used methods. Among the different murine models of sepsis, cecal ligation and puncture (CLP), and not the CS, is often considered the "gold standard" to induce polymicrobial sepsis in laboratory animals. CLP is a well-described model involving a simple surgical procedure that closely mimics the clinical course of intra-abdominal sepsis. However, CLP may not be an option for experiments involving newborn pups, where the cecum is indistinguishable from small bowel, where differences in microbiome content may affect the experiment, or where surgical procedures/anesthesia exposure needs to be limited. An important alternative method is the CS model, involving the intraperitoneal injection of cecal contents from a donor animal into the peritoneal cavity of a recipient animal to induce polymicrobial sepsis. Furthermore, CS is an effective alternative model of intraperitoneal polymicrobial sepsis in adult mice and can now be considered the "gold standard" for experiments in neonatal mice.


Assuntos
Ceco/microbiologia , Ceco/transplante , Abdome/microbiologia , Abdome/cirurgia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Ligadura/métodos , Camundongos , Peritonite/microbiologia , Peritonite/patologia , Punções/métodos , Sepse/microbiologia , Sepse/patologia
13.
Shock ; 55(5): 587-595, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021571

RESUMO

BACKGROUND: Increased circulating myeloid-derived suppressor cells (MDSCs) are independently associated with poor long-term clinical outcomes in sepsis. Studies implicate subsets of MDSCs having unique roles in lymphocyte suppression; however, characterization of these cells after sepsis remains incomplete. We performed a pilot study to determine the transcriptomic landscape in MDSC subsets in sepsis using single-cell RNAseq (scRNA-seq). METHODS: A mixture of whole blood myeloid-enriched and Ficoll-enriched PBMCs from two late septic patients on post-sepsis day 21 and two control subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). RESULTS: We successfully identified the three MDSC subset clusters-granulocytic (G-), monocytic (M-), and early (E-) MDSCs. Sepsis was associated with a greater relative expansion of G-MDSCs versus M-MDSCs at 21 days as compared to control subjects. Genomic analysis between septic patients and control subjects revealed cell-specific and common differential expression of genes in both G-MDSC and M-MDSC subsets. Many of the common genes have previously been associated with MDSC proliferation and immunosuppressive function. Interestingly, there was no differential expression of several genes demonstrated in the literature to be vital to immunosuppression in cancer-induced MDSC. CONCLUSION: This pilot study successfully demonstrated that MDSCs maintain a transcriptomic profile that is immunosuppressive in late sepsis. Interestingly, the landscape in chronic critical illness is partially dependent on the original septic insult. Preliminary data would also indicate immunosuppressive MDSCs from late sepsis patients appear to have a somewhat unique transcriptome from cancer and/or other inflammatory diseases.


Assuntos
Células Supressoras Mieloides , RNA-Seq , Sepse/genética , Análise de Célula Única , Transcriptoma , Humanos , Projetos Piloto
14.
Shock ; 55(2): 274-282, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769820

RESUMO

ABSTRACT: Neonatal sepsis leads to significant morbidity and mortality with the highest risk of death occurring in preterm (<37 weeks) and low birth weight (<2,500 g) infants. The neonatal immune system is developmentally immature with well-described defects in innate and adaptive immune responses. Immune adjuvants used to enhance the vaccine response have emerged as potential therapeutic options, stimulating non-specific immunity and preventing sepsis mortality. Aluminum salts ("alum") have been used as immune adjuvants for over a century, but their mechanism of action remains poorly understood. This study aims to identify potential mechanisms by which pretreatment with alum induces host protective immunity to polymicrobial sepsis in neonatal mice. Utilizing genetic and cell-depletion studies, we demonstrate here that the prophylactic administration of aluminum adjuvants in neonatal mice improves sepsis survival via activation of the nucleotide oligomerization domain-like receptor family, pyrin-domain-containing 3 inflammasome and dendritic cell activation. Furthermore, this beneficial effect is dependent on myeloid, non-granulocytic Gr1-positive cells, and MyD88-signaling pathway activation. These findings suggest a promising therapeutic role for aluminum-based vaccine adjuvants to prevent development of neonatal sepsis and improve mortality in this highly vulnerable population.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Compostos de Alúmen/uso terapêutico , Inflamassomos/fisiologia , Células Mieloides/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/mortalidade , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Granulócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taxa de Sobrevida
15.
FASEB J ; 35(2): e21156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140449

RESUMO

Historically, murine models of inflammation in biomedical research have been shown to minimally correlate with genomic expression patterns from blood leukocytes in humans. In 2019, our laboratory reported an improved surgical sepsis model of cecal ligation and puncture (CLP) that provides additional daily chronic stress (DCS), as well as adhering to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. This model phenotypically recapitulates the persistent inflammation, immunosuppression, and catabolism syndrome observed in adult human surgical sepsis survivors. Whether these phenotypic similarities between septic humans and mice are replicated at the circulating blood leukocyte transcriptome has not been demonstrated. Our analysis, in contrast with previous findings, demonstrated that genome-wide expression in our new murine model more closely approximated human surgical sepsis patients, particularly in the more chronic phases of sepsis. Importantly, our new model of murine surgical sepsis with chronic stress did not reflect well gene expression patterns from humans with community-acquired sepsis. Our work indicates that improved preclinical murine sepsis modeling can better replicate both the phenotypic and transcriptomic responses to surgical sepsis, but cannot be extrapolated to other sepsis etiologies. Importantly, these improved models can be a useful adjunct to human-focused and artificial intelligence-based forms of research in order to improve septic patients' morbidity and mortality.


Assuntos
Modelos Animais de Doenças , Leucócitos/metabolismo , Fenótipo , Sepse/genética , Transcriptoma , Adulto , Fatores Etários , Idoso , Animais , Ceco/cirurgia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Punções , Sepse/sangue , Fatores Sexuais
16.
Front Immunol ; 11: 1289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670283

RESUMO

Older adults have significantly worse morbidity and mortality after severe trauma than younger cohorts. The competency of the innate immune response decreases with advancing age, especially after an inflammatory insult. Subsequent poor outcomes after trauma are caused in part by dysfunctional leukocytes derived from the host's hematopoietic stem and progenitor cells (HSPCs). Our objective was to analyze the bone marrow (BM) HSPC transcriptomic [mRNA and microRNA (miR)] responses to trauma in older and younger adults. BM was collected intraoperatively <9 days after initial injury from trauma patients with non-mild injury [ISS ≥ 9] or with shock (lactate ≥ 2, base deficit ≥ 5, MAP ≤ 65) who underwent operative fixation of a pelvic or long bone fracture. Samples were also analyzed based on age (<55 years and ≥55 years), ISS score and transfusion in the first 24 h, and compared to age/sex-matched controls from non-cancer elective hip replacement or purchased healthy younger adult human BM aspirates. mRNA and miR expression patterns were calculated from lineage-negative enriched HSPCs. 924 genes were differentially expressed in older trauma subjects vs. age/sex-matched controls, while 654 genes were differentially expressed in younger subjects vs. age/sex-matched control. Only 68 transcriptomic changes were shared between the two groups. Subsequent analysis revealed upregulation of transcriptomic pathways related to quantity, function, differentiation, and proliferation of HSPCs in only the younger cohort. miR expression differences were also identified, many of which were associated with cell cycle regulation. In summary, differences in the BM HSPC mRNA and miR expression were identified between older and younger adult trauma subjects. These differences in gene and miR expression were related to pathways involved in HSPC production and differentiation. These differences could potentially explain why older adult patients have a suboptimal hematopoietic response to trauma. Although immunomodulation of HSPCs may be a necessary consideration to promote host protective immunity after host injury, the age related differences further highlight that patients may require an age-defined medical approach with interventions that are specific to their transcriptomic and biologic response. Also, targeting the older adult miRs may be possible for interventions in this patient population.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Ferimentos e Lesões/genética , Fatores Etários , Idoso , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Hematopoese , Humanos , Masculino , Pessoa de Meia-Idade , Interferência de RNA
17.
Front Med (Lausanne) ; 7: 616694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33659259

RESUMO

Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.

18.
Crit Care ; 23(1): 355, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722736

RESUMO

BACKGROUND: Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions. The objective of this study was to determine how the suppressive phenotype of MDSCs evolves after sepsis in surgical ICU patients, as well as to identify epigenetic differences in MDSCs that may explain these changes. METHODS: Circulating MDSCs from 267 survivors of surgical sepsis were phenotyped at various intervals over 6 weeks, and highly enriched MDSCs from 23 of these samples were co-cultured with CD3/CD28-stimulated autologous T cells. microRNA expression from enriched MDSCs was also identified. RESULTS: We observed that MDSC numbers remain significantly elevated in hospitalized sepsis survivors for at least 6 weeks after their infection. However, only MDSCs obtained at and beyond 14 days post-sepsis significantly suppressed T lymphocyte proliferation and IL-2 production. These same MDSCs displayed unique epigenetic (miRNA) expression patterns compared to earlier time points. CONCLUSIONS: We conclude that in sepsis survivors, immature myeloid cell numbers are increased but the immune suppressive function specific to MDSCs develops over time, and this is associated with a specific epigenome. These findings may explain the chronic and persistent immune suppression seen in these subjects.


Assuntos
Epigênese Genética/fisiologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Sepse/complicações , Fatores de Tempo , Idoso , Epigênese Genética/genética , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , MicroRNAs/imunologia , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Sepse/fisiopatologia
19.
PLoS One ; 13(10): e0205327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300408

RESUMO

Sepsis is a common and deadly complication among trauma and surgical patients. Neutrophils must mobilize to the site of infection to initiate an immediate immune response. To quantify the velocity of spontaneous migrating blood neutrophils, we utilized novel microfluidic approaches on whole blood samples from septic and healthy individuals. A prospective study at a level 1 trauma and tertiary care center was performed with peripheral blood samples collected at <12 hours, 4 days, and/or 14 days relative to study initiation. Blood samples were also collected from healthy subjects. Ex vivo spontaneous neutrophil migration was measured on 2 µl of whole blood using microfluidic devices and time-lapse imaging. For each sample, individual neutrophils were tracked to calculate mean instantaneous velocity. Forty blood samples were collected from 33 patients with sepsis, and 15 blood samples were collected from age- and gender-matched healthy, control subjects. Average age was 61 years for septic patients with a male predominance (67%). Overall, average spontaneous neutrophil migration velocity in septic samples was 16.9 µm/min, significantly lower than controls samples at 21.1 µm/min (p = 0.0135). Neutrophil velocity was reduced the greatest at <12 hours after sepsis (14.5 µm/min). Regression analysis demonstrated a significant, positive correlation between neutrophil velocity and days after sepsis (p = 0.0059). There was no significant association between neutrophil velocity and age, gender, APACHE II score, SOFA score, sepsis severity, total white blood cell count, or percentage of neutrophils. Circulating levels of the cytokines IL-6, IL-8, IL-10, MCP-1, IP-10, and TNF were additionally measured using bead-based multiplex assay and found to peak at <12 hours and be significantly increased in patients with sepsis at all three time points (<12 hours, 4 days, and 14 days after sepsis) compared to healthy subjects. In conclusion, these findings may demonstrate an impaired ability of neutrophils to respond to sites of infection during the proinflammatory phase of sepsis.


Assuntos
Movimento Celular , Citocinas/sangue , Neutrófilos/metabolismo , Sepse/sangue , Feminino , Humanos , Contagem de Leucócitos , Masculino , Microfluídica , Pessoa de Meia-Idade , Neutrófilos/patologia , Estudos Prospectivos , Sepse/epidemiologia , Sepse/patologia
20.
J Mol Med (Berl) ; 96(7): 673-684, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808244

RESUMO

Neonates rely on their innate immune system, and neutrophils in particular, to recognize and combat life-threatening bacterial infections. Pretreatment with lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 agonist, improves survival to polymicrobial sepsis in neonatal mice by enhancing neutrophil recruitment. To understand the response of human neonatal neutrophils to TLR4 stimulation, ex vivo spontaneous neutrophil migration, neutrophil transcriptomics, and cytokine production in the presence and absence of LPS were measured directly from whole blood of adults, term neonates, and preterm neonates. Spontaneous neutrophil migration was measured on novel microfluidic devices with time-lapse imaging for 10 h. Genome-wide neutrophil transcriptomics and plasma cytokine concentrations were also determined. Preterm neonates had significantly fewer spontaneously migrating neutrophils at baseline, and both term and preterm neonates had decreased neutrophil velocity, compared to adults. In the presence of LPS stimulation, the number of spontaneously migrating neutrophils was reduced in preterm neonates compared to term neonates and adults. Neutrophil velocity was not significantly different among groups with LPS stimulation. Preterm neonates upregulated expression of genes associated with the recruitment and response of neutrophils following LPS stimulation, but failed to upregulate the expression of genes associated with antimicrobial and antiviral responses. Plasma levels of IL-1ß, IL-6, IL-8, MIP-1α, and TNF-α increased in response to LPS stimulation in all groups, but IL-10 was increased only in term and preterm neonates. In conclusion, age-specific changes in spontaneous neutrophil migration counts are not affected by LPS despite changes in gene expression and cytokine production. KEY MESSAGES: Preterm neonates have reduced spontaneous neutrophil migration compared to term neonates and adults in the absence and presence of TLR4 stimulation. Preterm and term neonates have reduced neutrophil velocities compared to adults in the absence of TLR4 stimulation but no difference in the presence of TLR4 stimulation. Unique transcriptomic response to TLR4 stimulation is observed in neutrophils from preterm neonates, term neonates, and adults. TLR4 stimulation produces an age-specific cytokine response.


Assuntos
Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Citocinas/biossíntese , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptor 4 Toll-Like/agonistas , Transcriptoma , Adolescente , Adulto , Bioensaio , Células Cultivadas , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Recém-Nascido , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...